B.Sc. DEGREE EXAMINATION - STATISTICS

FOURTH SEMESTER - APRIL 2015

ST 4503/ST 5504/ST 5500 - ESTIMATION THEORY

Date : 16/04/2015
Time : 09:00-12:00

PART - A

Answer ALL questions:

1. Define unbiased estimator.
2. Define consistent estimator.
3. Write any two properties of ML estimators.
4. Define a sufficient statistic.
5. What properties the minimum Chi-square estimators hold?
6. Explain the method of moments.
7. Suggest an unbiased estimator for the parameter of $U(0, \theta)$.
8. Define prior distribution.
9. The mean height of a random sample of 60 students is 145 with a SD of 40 . Find the 95% confidence limits for the population mean assuming normality.
10. Define confidence interval.

$\underline{\text { PART - B }}$

Answer any FIVE questions:
11. If T_{n} is consistent for θ and g is continuous, show that $g\left(T_{n}\right)$ is consistent for $g(\theta)$.
12. Find maximum likelihood estimators of the normal parameters μ and σ^{2}.
13. State and prove Rao-Blackwell theorem.
14. Describe the method of modified minimum chi-square in estimation of parameters.
15. Explain the construction of confidence interval for the variance of a normal population when μ is unknown.
16. Write the properties of maximum likelihood estimator.
17. Distinguish between prior and posterior distributions.
18. Given a random sample of size n from $N(\mu, 1), \mu \in R$ construct $100(1-\alpha) \%$ confidence interval for μ.

PART - C

Answer any TWO questions:
(2x20=40 Marks)
19. (a) Establish the uniqueness of MVU estimator.
(b) State and prove factorization theorem on sufficient statistic.
20. (a) State and prove Chapman - Robbins inequality.
(b) Show that maximum likelihood estimator is a function of sufficient statistic.
21. (a) State and prove Lehman -Scheffe theorem.
(b) If $X_{1}, X_{2}, \ldots X_{n}$ is random sample from a population with p.d.f. $f(x)=e^{-(x-\theta)}, x>\theta$
$=0$ otherwise
Obtain an unbiased estimator of θ.
22. (a) Construct a $100(1-\alpha) \%$ confidence interval for the difference between means of two independent normal populations having common but unknown variance.
(b) Define completeness. Show that if $X_{1}, X_{2}, \ldots X_{n}$ is a random sample from $\mathrm{B}(1, \mathrm{p})$ then $\sum_{i=1}^{n} X_{i}$ is complete.

